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Recent breakthroughs in quantum wire- and quantum dot fabrication rely considerably
on effects of spontaneous formation of ordered nanostructures [1,2]. Multi-sheet arrays
of 3D or 2D islands are distinct from other types of nanostructures since the formation
of such an array is governed by both equilibrium ordering and kinetic-controlled
ordering. If the deposition of the first sheet of islands of material 2 on a material 1
is followed by a growth interruption, islands of an equilibrium periodic structure are
formed [3,4]. If the islands are regrown by material 1, and material 2 is again deposited,
a new growth mode occurs. For typical growth temperatures and growth rates, the
structure of the buried islands of the first sheet does not change during the deposition
of the second sheet. The second sheet of islands grows in the strain field created by
the buried islands of the first sheet. And the structure of the second sheet reaches
the equilibrium under the constraint of the fixed structure of the buried islands of
the first sheet.

A remarkable feature of multi-sheet arrays of 3D islands is that the buried islands
in successive sheets are spatially correlated. At the surface, new islands were observed
to be formed directly above buried islands [5-7]. The existing theory explaining well
the correlation accounts the strain created by buried islands and shows that energeti-
cally preferred sites for nucleation of islands of the second sheet occur above buried
islands [6,7]. In [6,7], buried islands were approximated as elastic point defects, and the
crystal was treated as elastically isotropic medium.

In seeming contradiction to the above results, very recent experiments on multi-
sheet arrays of 2D islands of CdSe in ZnSe matrix [8] unambiguously and surprisingly
revealed vertical anti-correlation between islands in successive sheets. Surface islands
are formed above the spacings in the sheet of buried islands.

Here we examine the energetics of multi-sheet arrays of 2D islands and seek the
equilibrium configuration of the array of surface islands, under the constraint of a fixed
array of buried islands. The two key inputs of our treatment which make it different
from those of [6, 7], are as follows. i) We consider 2D islands of 1-2 monolayers height
where the separation between successive sheets is comparable or even less than the
lateral size of the islands, and we take into account their exact shape. ii) We take into
account the elastic anisotropy of cubic crystals in question.

Since a single-sheet array of 2D islands can exist both as a ID array of stripes and
as a 2D array of compact islands (disks) [9], we address both possibilities. To extract
essential physics, it suffices to examine a double-sheet array comprised of one sheet of
buried islands and one sheet of surface islands. The total energy of the double-sheet
array equals,

A(ss) + ESB)i(1
EtotaI = Esurf + Eboundaries + Aelastic r ElsB(1
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Fig 1. Geometry of double-sheet arrays of 2D islands. (a) Each sheet of islands forms a ID
array of stripes. The cross-section is shown. (b) Each sheet of islands forms a 2D array of
square-shaped islands. The plan view is plotted. Buried islands are depicted by dashed lines, and
solid lines are used for surface islands.

Here Esurf is the sum of the surface energies of surface islands and of uncovered parts of
material 1, Eboundaries is the energy of island boundaries, AEssJic is the elastic relaxation
energy of surface (S) islands due to the discontinuity of the intrinsic surface stress tensor
on island boundaries [3,9], E ]io is the elastic energy of the interaction of surface islands
(S) and of buried islands (B). We focus on the typical experimental situation of an
equal amount of the deposited material in each deposition cycle. Then each sheet
of islands alone tends to form the same periodic structure which corresponds to the
minimum of the sum of the first three terms of Eq.(1). If the interaction between the
two sheets is neglected, the surface array of islands as a whole can be subject to an
arbitrary shift in the xy-plane. The strain due to buried islands has the same periodicity
as the array of surface islands. Therefore the fourth term in Eq.(1) does not change the
periodicity of the surface structure, and just defines its relative position with respect
to the array of buried islands (Fig. 1). Since the interaction energy E (Bi is the only
term in Eq.(1) which depends on the relative shift of the two arrays we focus only on
this energy term as a function of the shift X0 for ID array of stripes (Fig. la) and of
the shift (X0, YO) for 2D array of compact islands (Fig. lb).

To evaluate the strain due to buried islands, we refer to the strain due to point
defects [10]. A point defect located at i is represented by the superposition of three
mutually perpendicular double forces (by an elastic dipole), and the effective body
force density is f(r) = aijVj6(r - ir). A monolayer-thick inclusion in the plane z = z
with macroscopic lateral dimensions is a 2D array of point defects. It can be described
by a 2D shape function EB(r 11) which equals 1 inside the inclusion, and 0 otherwise.
The body force density associated with a 2D inclusion can be obtained by adding
contributions of single point defects,

,fi(r) = -- J d2ff5aijVj [*(rl - f1)6(z - -z]B(,) , (2)

where A0 is unit cell area in the xy plane. Equation (2) is derived under the assumption
of no mutual influence between the point defects comprising the inclusion. Generally
speaking, the tensor aij characterizing the double force density is different for a single
point defect and for a monolayer-thick inclusion. A substitutional impurity atom in
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a zinc blend crystal of 11-V or II-VI semiconductor has Td site symmetry, and the
corresponding tensor aij has the cubic symmetry. On the other hand, if the inclusion
of equal substitutional impurity atoms is oriented in the (001) plane of the zinc blend
crystal, has monolayer thickness and infinite lateral dimensions, each atom of the
inclusion has D2d symmetry. Therefore, the tensor aij characterizing a monolayer-
thick buried island has a uniaxial symmetry.

The elastic properties of the surface islands are described by the difference of two-
dimensional intrinsic surface stress tensors (AT%/) of the two materials. The energy of
the elastic interaction between a periodic array of buried islands and a similar periodic
array of surface islands is obtained in the form of the sum over the reciprocal lattice
vectors [ 11]

EB)=hB2

Elastic - E (kll) exp (ikIiR0)(ATa/3)a/mV'

[VJiw(kII;z,Z') + V/Q• (kII;z,Z')] _z70 (3)

where R0 is the relative sheet of the two arrays, hB is the thickness of the buried islands,
ik, V' V3 - ik, V•, a-ika, 03=1,2, 1, m=1,2,3. We treat the crystal

as elastically anisotropic cubic medium and use the static Green's tensor G,1 (kII; z, z')

from [12]. The dependence of Eec on the separation between the two sheets is
determined by the behavior of Gd1 (kII; z, z') as a function of zo. Gd1 (kIl; z, z') is a linear
combination of three exponentials, exp(-ackzo), where three attenuation coefficients a,
are functions of the direction ki, in the surface plane [12]. The key point is that, in a cubic
crystal with a negative parameter of elastic anisotropy, A = (ClI - C12 - 2C44)/C44 < 0,
which is the fact for all I11-V and I1-VI cubic semiconductors, two of the three a, are
complex conjugate. Complex attenuation coefficients a imply that the static analogues
of Rayleigh waves exhibit not purely an exponential decay, but an oscillatory one.
This phenomenon is known for surface acoustic waves which are generalized Rayleigh
waves in elastically anisotropic crystals [13]. Complex attenuation coefficients lead to
the conclusion that the elastic interaction between successive sheets of islands exhibits
an oscillatory decay with the separation between sheets.

The interaction energy (3) has been evaluated for double-sheet arrays of stripes
and for double-sheet arrays of square islands. For the separation between the two
sheets, zo < 0.5D0 where Do is the lateral period, the difference between the value of
ESB for the most favorable relative arrangement, and the one for the most unfavorable
arrangement, is of the order of 0.1 meV/A 2. This is the same order of magnitude as a
typical energy of a single sheet of surface islands [9]. This comparison confirms that
the elastic interaction between the two sheets of islands can indeed result in vertical
correlation or anti-correlation between the two sheets.

The phase diagram of Fig. 2b shows that the favorable relative arrangement of the
two sheets of islands alternates from vertical correlation to anti-correlation, some
intermediate arrangements being possible for small spacing zo. The separation corre-
sponding to the transition from correlation to anti-correlation depends dramatically
on the anisotropy parameter pB - a-,_a,, of the double force density character-
izing buried islands. Our results are in agreement with existing experimental data on
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Fig 2. The phase diagram of a double-sheet array of square-shaped islands. (a) The relative shift
(Xo, Yo) is defined by the projection of the center of a surface island onto the superlattice formed
by the buried islands. Seven types of the symmetry are labeled according to [14]. (b) The phase
diagram for the surface coverage 0.35. PB is the anisotropy of the double force density of buried
islands, z0 is the separation between the two sheets of islands, and D is the period.

anti-correlations in multi-sheet arrays of 2D islands [8].
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